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Abstract: Optical systems with integrated tunable lenses allow for rapid axial-scanning without
mechanical translation of the components. However, changing the power of the tunable lens
typically upsets aberration balancing across the system, introducing spherical and chromatic
aberrations that limit the usable axial range. This study develops an analytical approximation for
the tuning-induced spherical and axial chromatic aberration of a general optical system containing
a tunable lens element. The resulting model indicates that systems can be simultaneously
corrected for both tuning-induced spherical and chromatic aberrations by controlling the lateral
magnification, coma, and pupil lateral color prior to the tunable surface. These insights are then
used to design a realizable axial-scanning microscope system with a high numerical aperture and
diffraction-limited performance over a wide field of view and deep axial range.
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1. Introduction

Biomedical research has been transformed by 3D optical microscopy techniques, including
confocal [1,2], two-photon [3], and light-sheet microscopy [4,5]. In most circumstances, 3D
information is obtained by capturing a sequence of images in the xy-plane while translating
the optical system along the z-axis. Translation in the z-direction may be achieved using either
traditional leadscrew actuators or faster piezoelectric actuators (e.g., Physik Instrumente P-725
or Thorlabs PFM450E). However, it is unclear if this approach may be used to achieve higher
z-scanning speeds, as it requires accelerating the relatively large moving mass of the microscope
objective. In addition, when used with fragile biological samples and liquid immersion objectives,
the z-scanning speed must frequently be further limited to avoid sample movement and damage.

Multiple approaches have been explored for accelerating volumetric imaging, including
varifocal lenses [6–14], remote focusing [15,16], extended depth of field microscopy [17,18],
tomography [19], and holographic microscopy [20]. Varifocal lenses are relatively simple and
compatible with common imaging modalities, making them an especially promising approach
for performing fast z-scanning. Most commonly, a varifocal lens is positioned either directly
behind the microscope objective or at a pupil located within the microscope body, and changes in
the lens power produce rapid movement of the focal plane while maintaining the microscope
objective in a fixed position. Numerous approaches have been explored for producing varifocal
lenses, including elastic membrane based lenses [21], dielectric or electro-wetting lenses [22–24],
liquid crystal lenses [25], electro-optic lenses [26], acoustic gradient index lenses [27,28],
deformable mirrors [29,30], and others [31]. Although the specific properties of each technology
vary, liquid-based varifocal elements are often capable of larger changes in lens power over
milliseconds, while electro-optic and acoustic elements typically provide smaller lens power
ranges over microseconds.

Although varifocal lenses enable rapid z-scanning, tuning-induced spherical aberration has been
a major challenge in integrating these elements into microscopy systems. Modern microscope
objectives are capable of imaging large fields of view at high numerical aperture with diffraction
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limited performance. However, displacement of the focal plane from the design position
introduces substantial amounts of uncorrected spherical aberration [32–35]. In many cases,
the usable focal shift range is much smaller than that available with traditional z-translation
methods. Prior studies have found that these tuning-induced aberrations may be reduced by
using additional dynamic elements, including deformable mirrors [36,37] and multiple tunable
lenses [34,38–42]. In addition, recent studies have demonstrated that liquid-based lenses with
aspherical surfaces [43–52] or multi-configuration numerical optimization [53–55] can be used
to reduce these aberrations. Even with recent advances, currently available methods typically
require sacrifices in xy field of view, decreases in z scanning range, reductions in numerical
aperture, or mechanically-complex tunable elements.

This study examines the aberrations produced by tunable elements with the aim of developing
improved mitigation strategies. Approaches for correcting lateral color and magnification color
are first discussed, and the effects of focal shifts on the wavefront aberration function at the
entrance pupil are reviewed. Although the wavefront function at the entrance pupil provides
qualitative insights into the problem, a precise mitigation strategy requires an understanding
of the wavefront function at the exit pupil adjacent to the tunable lens surface, which is less
easily obtained. To address this need, an analytical model is developed for the wavefront
function at the exit pupil for on-axis points to a third-order approximation of ray height and a
first-order approximation of focal shift. Importantly, this model is valid for all axisymmetric
optical systems, even those that do not form perfect images in the initial configuration. Next,
the obtained wavefront function and analytical ray tracing are used to construct an analytical
model for the tuning-induced spherical aberration of a complete optical system containing a
tunable lens surface. This model reveals the general conditions under which the first-order
tuning-induced spherical aberration is eliminated. Surprisingly, it is found that the aberration
may be removed by controlling the system magnification and coma at the tunable lens, and this
correction does not require additional dynamic elements or aspherical surfaces. Next, a paraxial
approximation is used to determine the general conditions necessary to eliminate tuning-induced
axial chromatic aberration. The predictions of the analytical models are then verified using
numerical ray tracing and realizable test cases. Finally, these constraints are used to design a
wide field of view (550 µm), large focal shift (350 µm), large numerical aperture (NA=0.8),
apochromatic (450-625µm) microscope system with diffraction-limited performance across the
entire operating range. As designed, this system provides approximately an order of magnitude
improvement in the diffraction-limited focus range when compared to traditional tunable lens
designs.

2. Conditions for elimination of lateral color and magnification changes

For an axial-scanning system to operate effectively over long focus ranges, it is necessary to
eliminate tuning-induced lateral color. This is readily achieved by positioning the tunable surface
at a system pupil. Since the chief ray for an off-axis point (dashed grey line in Fig. 1(C)) intersects
the optical axis at the pupil, a thin lens positioned at this location does not alter the trajectory of
the chief ray. Consequently, if a tunable element is positioned at a system pupil that images to the
entrance pupil without axial chromatic aberration, then wavelength-dependent changes in the
power of the tunable element do not alter the lateral color. As it is very desirable to hold the
lateral color fixed, subsequent analysis will assume that the tunable element is positioned at a
system pupil corrected for axial color.

Following similar reasoning, when the tunable element is positioned at a system pupil, changes
in the power of the tunable element displace the object space focal point along a trajectory
that follows the chief rays. As has been previously discussed [8,56], the resulting change in
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Fig. 1. (A) Schematic diagram of a typical axial-scanning optical system, in which a
varifocal lens is positioned at an infinity-focused pupil formed by tube lenses (OL: objective
lens, TL1-3: tube lenses, VL: varifocal lens, SN: sensor). (B) Schematic diagram of the
generalized axial-scanning optical system examined in this study, in which components
are represented by abstract thick lenses and light is not necessarily infinity-focused at the
varifocal lens (FL: front lens, RL: rear lens, bracket indicates region shown in detail in C).
(C) Detailed diagram of the system examined in this study, indicating the quantities used for
developing analytical approximations.

magnification is given by
d M
d ζ
=

M
Lt

, (1)

where M is the paraxial lateral magnification of the optical system, ζ is the displacement of the
focal position in a direction away from the lens, and Lt is the distance from the object to the
entrance pupil. Consequently, the lateral magnification is constant when Lt approaches infinity,
or equivalently when the system is telecentric in the object space or the chief ray angle (v)
approaches zero.

3. Conditions for elimination of tuning-induced spherical aberration

3.1. Wavefront aberration function at the entrance pupil

As a first step towards developing an improved correction strategy, the effects of a shift in the
object focal plane on the wavefront at the entrance pupil are calculated. To facilitate the derivation
of simple equations appropriate for design purposes, this analysis will focus on the aberrations of
ray pencils originating from on-axis positions. In this case, the change in the wavefront aberration
function induced by a focal shift ζ as calculated for a flat reference surface located at the entrance
pupil is

δWe = (⌊PT∗⌋ − ⌊PT⌋) − (⌊QT∗⌋ − ⌊QT⌋), (2)

where P is a point displaced from the focal plane by ζ along the optical axis, Q is the on-axis
point within the initial focal plane, T is the on-axis point within the entrance pupil, T∗ is the
position of the intersection of a marginal ray from point P with the entrance pupil, and ⌊ ⌋ denotes
the optical path length between two points (see Fig. 1(C)). Although the wavefront aberration
is often calculated for a spherical reference surface centered on the focal point, the wavefront
function is well-defined for any reference surface and a flat surface is used here as it simplifies



Research Article Vol. 12, No. 6 / 1 June 2021 / Biomedical Optics Express 3533

the subsequent interpretation. Examination of the geometry allows Eq. (2) to be expanded as

δWe = noLt

[︃
1 − ζ/Lt −

√︂
(1 − ζ/Lt)2 + tan2 w

]︃
− noLt

(︂
1 −

√︁
1 + tan2 w

)︂
,

(3)

where no is the refractive index of the media at the object, and w is the angle of the marginal ray
at the initial focal position.

3.2. Form of wavefront aberration function at the exit pupil

Although the wavefront aberration function at the entrance pupil provides some qualitative
insights into the sources of focal shift induced aberrations, a quantitative understanding requires
computation of the wavefront function at the exit pupil in front of the tunable lens surface. If
the optical system perfectly images the entrance pupil to the exit pupil, then the optical path
length is identical for all rays originating from a point on the entrance pupil and impinging on the
corresponding point on the exit pupil. Consequently, the wavefront aberration function on the
exit pupil is equal to the wavefront function evaluated at the corresponding points on the entrance
pupil. However, real optical systems are rarely designed to produce sharp images in the pupil
image space. In addition, it will later be shown that the deliberate inclusion of aberrations in the
initial configuration can in fact be used to correct for the tuning-induced aberrations. For these
reasons, it is necessary to understand the effects of focal shift on the wavefront aberration at the
exit pupil for an imperfect optical system.

For an optical system with arbitrary aberrations, a focal shift ζ produces a change in the
wavefront aberration function at the exit pupil for an on-axis position equal to

δWx = (⌊PQ∗R∗⌋ − ⌊PQR⌋) − (⌊QR∗⌋ − ⌊QR⌋), (4)

where Q∗ is the position of the intersection of a marginal ray from P with the initial focal plane,
R is the on-axis point within the exit pupil, and R∗ is the position of the intersection of a marginal
ray with the exit pupil plane (see Fig. 1(C)). Throughout the subsequent derivation, the focus shift
ζ and the position at which the marginal ray intercepts the exit pupil yp

′ are taken as variables
while other system properties (e.g., Lf , Lp) are taken as fixed parameters. The variables ζ and
yp

′ are independent by construction, as they completely and uniquely describe the marginal ray
being examined.

The term ⌊PQ∗R∗⌋ in the above relationship may be expanded and calculated as

⌊PQ∗R∗⌋ = ⌊PQ∗⌋ + ⌊Q∗R∗⌋ (5)

⌊PQ∗⌋ = noζ
√︂

1 + tan2[u(ζ , yp ′)] (6)

⌊Q∗R∗⌋ = ⌊Q∗R⌋ + η∗(ζ , yp
′), (7)

where u(ζ , yp
′) is the angle between a marginal ray and the optical axis at the sample, and

η∗(ζ , yp
′) is equal to the optical path difference (OPD) between a marginal ray and the chief ray

for an off-axis position on the initial focal plane (point Q∗). Similarly, the path length for a ray
starting at the displaced focal point and running along the optical axis is equal to

⌊PQR⌋ = noζ + ⌊QR⌋. (8)

The optical path length for a marginal ray emerging from the on-axis point Q is equal to

⌊QR∗⌋ = ⌊QR⌋ + η(ζ , yp
′), (9)

where η(ζ , yp
′) is equal to the OPD between a marginal ray and the chief ray for an on-axis

position on the initial focal plane.
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Further simplification requires elimination of the term ⌊Q∗R⌋ from the above equations,
which may be achieved by examining the conjugate system and assuming that the focal shift is
infinitesimal. The optical path length of a ray emerging from a point at the center of the entrance
pupil, passing through the point Q∗, and impinging on a point at the center of the exit pupil may
be calculated as

⌊TQ∗R⌋ = ⌊TQ∗⌋ + ⌊Q∗R⌋, (10)

where the first term may be expanded as

⌊TQ∗⌋ = noLt

√︂
1 + (ζ/Lt)2 tan2[u(ζ , y′p)]. (11)

The path length for a ray passing along the optical axis may also be calculated as

⌊TQR⌋ = noLt + ⌊QR⌋. (12)

If it is assumed that ζ is infinitesimal, the angle v between the ray TQ∗ and the optical axis
may also be assumed to be infinitesimal. As any in-focus system produces perfect images in the
paraxial approximation, then it follows that the optical path length is constant for all rays in a
pencil originating at point T on the entrance pupil and terminating at point R on the exit pupil,
such that

⌊TQ∗R⌋ = ⌊TQR⌋. (13)

The validity of the paraxial approximation in this specific context results from the assumption of
infinitesimal ζ , but this does not reduce the overall system of equations to a paraxial approximation
or otherwise impose any constraints on the aberrations present within the optical system.

Rearrangement of Eqs. (4)–(13) provides the change in the wavefront aberration function
induced by a focal shift ζ of an on-axis position at the exit pupil

δWx = noζ

(︃√︂
1 + tan2[u(ζ , yp ′)] − 1

)︃
− noLt

(︃√︂
1 + (ζ/Lt)2 tan2[u(ζ , yp ′)] − 1

)︃
+ η∗(ζ , yp

′) − η(ζ , yp
′).

(14)

3.3. Contribution of η∗ and η to the wavefront function at the exit pupil

The η∗ and η terms of Eq. (14) represent the OPD between the marginal and chief ray at the exit
pupil for off-axis and on-axis positions on the initial focal plane, respectively. Since the off-axis
position is given by the intersection of the chief ray emanating from the focally-shifted position
P with the original focal plane, these terms are still dependent on the focal shift. However,
these terms are otherwise entirely defined by the optical properties of the system in its initial
configuration. If the wavefront at the exit pupil is represented as the sum of a spherical wave and
third-order aberrations, then η∗ may be approximated as

η∗(ζ , yp
′) = −nf Lf

(︃√︂
1 +

[︁
yp ′/Lf − yi ′(ζ , yp ′)/Lf

]︁2
−

√︂
1 +

[︁
yi ′(ζ , yp ′)/Lf

]︁2
)︃

+W040
[︁
(xp

′)2 + (yp
′)2

]︁2
+W131 yp

′ yi
′(ζ , yp

′)
[︁
(xp

′)2 + (yp
′)2

]︁
+W222 (yp

′)2
[︁
yi
′(ζ , yp

′)
]︁2 ,

(15)

where nf is the refractive index of the media in front of the tunable lens, Lf is the distance from
the exit pupil to the image plane in the initial configuration, yi

′(ζ , yp
′) is the image height for a

pencil originating from point Q∗, and xp
′ and yp

′ are coordinates on the exit pupil. The terms
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W040, W131, and W222 represent the spherical aberration, coma, and astigmatism of the initial
configuration, respectively. Since only on-axis points are considered in this analysis, all rays
are meridional and xp

′ is zero. Furthermore, since ζ is infinitesimal, the image height may be
calculated as

yi
′(ζ , yp

′) = Mζ tan[u(ζ , yp
′)], (16)

where M is the paraxial lateral magnification of the optical system. In addition, the astigmatism
term of Eq. (15) is of O(ζ2), so this term can be discarded. Using a similar approach, η(ζ , yp

′) is
found to be equal to

η(ζ , yp
′) = −nf Lf

(︃√︂
1 + (yp ′/Lf )2 − 1

)︃
+W040 (yp

′)4. (17)

Rearrangement of Eqs. (15)–(17) yields

η∗(ζ , yp
′) − η(ζ , yp

′) = −nf Lf

(︃√︂
1 +

[︁
yp ′/Lf − yi ′(ζ , yp ′)/Lf

]︁2
−

√︂
1 + (yp ′/Lf )2

)︃
+ nf Lf

(︃√︂
1 +

[︁
yi ′(ζ , yp ′)/Lf

]︁2
− 1

)︃
+W131 Mζ(yp

′)3 tan[u(ζ , yp
′)].

(18)

3.4. Solution for marginal ray angle

The wavefront aberration function at the exit pupil is fully-described by Eqs. (14) and (18).
However, application of these equations requires expansion of the function for the marginal ray
angle u(ζ , yp

′). Since the quantity u(ζ , yp
′) always appears in the form of a product with ζ in

Eqs. (14) and (18), any dependence of u(ζ , yp
′) on ζ results in terms of order O(ζ2) in the final

solution and can be ignored. Consequently, within this specific context the marginal ray angle
may be approximated from the initial focus position

u(ζ , yp
′) ≈ w(yp

′). (19)

Within the paraxial approximation, the value of w(yp
′) is readily obtained from the Lagrange

invariant [57, Eqn. 3.20]

wparaxial(yp
′) = −

nf Myp
′

noLf
. (20)

However, the paraxial approximation cannot be justified here. A third-order relationship may
be derived from the Abbe sine condition, but this too makes the undesirable assumption that the
initial imaging condition is free of aberrations.

Nonetheless, the required relationship may be obtained by examining the correspondence
between coordinates on the entrance and exit pupils. While prior sections examined a ray
originating from an on-axis position shifted away from the initial focal plane, the correspondence
between the pupils is most easily investigated by following a ray from an off-axis point located on
the initial plane. As these are closely related (see Fig. 1(C)), a similar nomenclature is employed.
The wavefront aberration function at the entrance pupil for a point on the initial focal plane may
be taken as

We = −noLt

(︂√︂
1 + (xp/Lt)2 + (yp/Lt − yi/Lt)2

−

√︂
1 + (yi/Lt)2

)︂
,

(21)

where xp and yp are the pupil coordinates, and yi is the y-coordinate of the off-axis point. The
direction cosine of a ray emanating from the entrance pupil is given by

r̂ · x̂ =
1
no

∂We

∂xp
, (22)
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where r̂ is a unit vector in the direction of the ray at the entrance pupil and x̂ is a unit vector in the
x-direction. Similarly, the wavefront function at the exit pupil for a point on the initial focal plane
may be taken equal to

Wx = −nf Lf

[︂√︂
1 + (xp ′/Lf )2 + (yp ′/Lf − yi ′/Lf )2

−

√︂
1 + (yi ′/Lf )2

]︂
+W040[(xp

′)2 + (yp
′)2]2

+W131 yi
′yp

′[(xp
′)2 + (yp

′)2]

+W222 (yi
′)2 (yp

′)2.

(23)

The direction cosine of a ray from the exit pupil is then given by

r̂′ · x̂ =
1
nf

∂Wx

∂xp ′
, (24)

where r̂′ is a unit vector in the direction of the ray. The skew invariant theorem [57, Eqn. 6.23]
applies to any axisymmetric system, including those with aberrations, and provides

no r̂ · x̂ = nf M r̂′ · x̂, (25)

where M may again be taken as the paraxial lateral magnification by virtue of the assumption
that ζ , and therefore yi, are infinitesimal.

Since a third-order approximation is required, the correspondence between the entrance and
exit pupils is taken as

xp = A1xp
′/Lf + A2(xp

′/Lf )
3 + O[(xp

′/Lf )
5], (26)

where A1 and A2 are system dependent constants, and Lf is used to non-dimensionalize the
relationships. The values of A1 and A2 may be obtained by substituting Eqs. (21)–(24) and
Eq. (26) into Eq. (25), further expanding the result as a Taylor series of xp

′/Lf , and then equating
the corresponding terms of the resulting polynomial. This yields

A1 =
nf MLt

no
(27)

A2 =
(M2nf

3 − no
2nf − 8no

2W040Lf
3)MLt

2no3 . (28)

Since the system is assumed to be axisymmetric, these coefficients also describe the relationship
between yp and yp

′ in the presence of third-order aberrations. The relationship between the
direction cosine of a ray and the wavefront aberration function gives the angle w(yp

′) as

w(yp
′) = arcsin

(︃
1
no

∂We

∂yp

)︃
. (29)

Substituting Eqs. (21,26)–(28) into the above and expanding the result as a Taylor series of
yp

′/Lf , yields

w(yp
′) = −

nf M
noLf

yp
′ −

(M2nf
3 − 3no

2nf − 24no
2Lf

3W040)M
6no3L3

f
(yp

′)3. (30)
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3.5. Closed-form solution for the wavefront function at the exit pupil

The closed-form solution for the wavefront aberration function at the exit pupil may be assembled
from the preceding results. Combining Eqs. (14), (18), and (30) and expanding the result as a
Taylor series of yp

′/Lf provides

∂Wx

∂ζ
= −

nf
2M2

2noLf
2 (yp

′)2

−
nf M2(M2nf

3 − 4no
2nf + 8no

2W131Lf
3)

8no3Lf
4 (yp

′)4.
(31)

In the above series expansion, the second-order term represents defocus induced by the shift of
the focal plane, while the fourth-order term represents spherical aberration. The tuning-induced
changes in the wavefront function at the exit pupil differ from those at the entrance pupil (see
Eq. (3)) in that they depend on the properties of the intermediate optics. In particular, the induced
spherical aberration at the exit pupil varies with the refractive indices of the media at both the
object and the exit pupil, the paraxial lateral magnification, the position of the image plane
relative to the pupil, and also the coma of the system in the initial configuration.

The contribution of coma to tuning-induced spherical aberration may be understood by
consideration of the polynomial order of the relevant terms. Tuning-induced spherical aberration
involves a term in the wavefront function of the form ζ × (yp

′)4. Coma introduces a term of
the form yi

′ × (yp
′)3 (see Eq. (15)) and yi

′ has an approximate form of ζ × yp
′ (see Eq. (16)),

such that coma gives rise to a term of form ζ × (yp
′)4 similar to a tuning-induced spherical

aberration. Alternatively, this may be understood intuitively by recognizing that marginal rays
displaced in the axial direction are equivalent to marginal rays emerging from off-axis positions
on the initial focal plane, and the path length for these rays is dependent on the coma of the
system in the initial configuration (see Fig. 1(C)). Whether coma in the initial configuration also
affects tuning-induced coma is unclear, as this falls outside the scope of the present assumptions.
However, subsequent sections will further examine the contribution of coma to tuning-induced
spherical aberration, and whether the deliberate introduction of coma can be used to null out
tuning-induced spherical aberration inherent to tunable lens systems.

3.6. Tracing rays through the tunable lens surface

In order to understand the effects of a tunable lens on spherical aberration, a ray from the exit
pupil is next analytically traced through the tunable lens surface. The trajectory of a ray leaving
the exit pupil may be calculated from the wavefront aberration function

Wx = −nf Lf

(︃√︂
1 + (yp ′/Lf )2 − 1

)︃
+W040(yp

′)4

+
∂Wx

∂ζ
ζ(Ct),

(32)

where Ct is the curvature of the tunable surface. In expanding this wavefront function, the
curvature Ct and and pupil position yp

′ are taken as variables, and other quantities are either
treated as functions of these values or are fixed properties of the optical system. The angle of a
ray relative to the optical axis (see Fig. 2) can be calculated as

θf (Ct, yp
′) = arcsin

(︃
1
nf

∂Wx

∂yp ′

)︃
. (33)

The variables θf and u′ represent the same physical quantity, but use different sign conventions
to allow for a more intuitive derivation. Expanding Eq. (33) in terms of yp

′ yields the Taylor
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series
θf (Ct, yp

′) = F1(Ct)
[︁
Ctyp

′
]︁
+ F2(Ct)

[︁
Ctyp

′
]︁3 , (34)

where the pupil height is non-dimensionalized by the surface curvature Ct. The functions F1(Ct)

and F2(Ct) are constant relative to the pupil position and equal to

F1(Ct) = −
1

CtLf
−

nf M2ζ(Ct)

noCtLf
2 (35)

F2(Ct) =
1

3Ct
3Lf

3 +
4W040

nf Ct
3

−
M2(nf

3M2 − 3no
2nf + 8Lf

3no
2W131)ζ(Ct)

2no3Ct
3Lf

4 .
(36)

zsag

θf

nf nb

θb

φ
yp’

Fig. 2. Schematic diagram of a ray from the exit pupil intercepting the tunable lens surface,
indicating quantities used for analytical approximations.

It has been assumed that the tunable lens surface is positioned at the exit pupil, such that the
lateral color is unaffected by changes in the tunable lens power. If it is also assumed that the
curvature at the lens surface is small and the thin lens approximation applies, then rays intercept
the exit pupil and lens surface with the same y-coordinate. Consequently, the angle of the ray at
the back of the tunable lens surface may be taken to have a form

θb(Ct, yp
′) = B1(Ct)

[︁
Ctyp

′
]︁
+ B2(Ct)

[︁
Ctyp

′
]︁3 , (37)

where B1(Ct) and B2(Ct) are constant relative to the pupil position. These values may be
calculated from Snell’s Law, which provides

nf sin
[︁
ϕ(Ct, yp

′) + θf (Ct, yp
′)
]︁
− nb sin

[︁
ϕ(Ct, yp

′) + θb(Ct, yp
′)
]︁
= 0, (38)

where nb is the refractive index of the media behind the tunable surface, and ϕ(Ct, yp
′) is the

angle of the surface normal relative to the optical axis (see Fig. 2). The angle ϕ(Ct, yp
′) may be

calculated from the sag equation for the surface. It is assumed that the surface is approximately
spherical and the sag is taken as a fourth order polynomial

zsag(Ct, yp
′) =

1
2

Ct(yp
′)2 +

1
8

Ct
3(yp

′)4 + [β + γζ(Ct)] (yp
′)4, (39)

where β is a constant that controls the deviation of the surface from a spherical form, and γ is
a constant that represents a tuning-dependent deviation from a spherical form. For a perfectly
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spherical surface, β and γ are both zero. The sine and cosine of ϕ may then be calculated as

cos[ϕ(Ct, yp
′)] = 1/

√︂
1 + (∂zsag/∂yp ′)2 (40)

sin[ϕ(Ct, yp
′)] = ∂zsag/∂yp

′/

√︂
1 + (∂zsag/∂yp ′)2. (41)

The relationship between the front and back angles may be calculated by expanding Eq. (38),
substituting Eqs. (34,40)–(41), expanding the result in terms of a Taylor series of Ctyp

′, and
equating the coefficients of each of the terms, yielding

B1(Ct) =
nf − nb + nf F1(Ct)

nb
(42)

B2(Ct) = −
1
2
[(nf /nb)F1(Ct) − B1(Ct)]

−
1
2
{(nf /nb)[F1(Ct)]

2 − [B1(Ct)]
2}

−
1
6
{(nf /nb)[F1(Ct)]

3 − [B1(Ct)]
3}

+
4(nf − nb)

nbCt
3 [β + γζ(Ct)] + (nf /nb)F2(Ct).

(43)

3.7. Complete formulae for tuning-induced spherical aberration

If the system is to remain in paraxial focus during tuning, then

∂

∂Ct

{︁
B1(Ct)[Ctyp

′]
}︁
= 0. (44)

Substitution of Eqs. (35), (36), (42), and (43) into Eq. (44) and rearrangement yields the
relationship between changes in the surface curvature and the position of the focal plane

d ζ
d Ct
= −

no(nb − nf )Lf
2

nf 2M2 . (45)

Similarly, changes in the surface curvature produce a change in the back angle of

δS =
∂θb
∂Ct

. (46)

Expansion of the above yields a general equation for the tuning induced deviation

δS =
(nb − nf )(yp

′)3

2no2nf 2nb2M2Lf
2

[︁
nbnf

4M4 − no
2nf M2(4nbnf + nf

2 − 8nbW131Lf
3)

+ 2no
2nf

2(nb + nf )M2CtoLf − no
2nf

2(2nb + nf )M2Cto
2Lf

2

+ 8γno
3nb(nb − nf )Lf

4]︁ ,
(47)

where Cto is the initial curvature of the tunable lens surface. It is clear that the tuning-induced
spherical aberration is dictated by the refractive indices of the media, the paraxial magnification,
the position of the intermediate focal plane relative to the tunable lens surface, the initial lens
curvature, coma of the initial system configuration, and any tuning-dependent aspherical form of
the tunable surface (prescribed by γ).
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Additional insights may be gained by applying some simplifying assumptions. If it is assumed
that the tunable lens surface is spherical (β = 0 and γ = 0) and has small initial curvature
(Cto = 0), then the solution for δS simplifies to

δS =
(nb − nf )(yp

′)3

2no2nf nb2Lf
2

[︁
nbnf

3M2 − no
2(4nbnf + nf

2 − 8nbW131Lf
3)
]︁
. (48)

If it is further assumed that the initial imaging system is free of coma, then this deviation goes
to zero if and only if the magnification has the value

M = ±
no
√︁

4nb + nf

nf
√nb

. (49)

This is a powerful result, as it indicates that the tuning-induced spherical aberration may be
eliminated simply by designing the system with a real or virtual intermediate image plane at the
prescribed magnification just before or after the tunable lens surface.

However, one potential caveat to this approach is that for common optical configurations the
prescribed magnification may be smaller than would otherwise be desirable. For example, for
a water immersion objective (no = 1.33, NA=0.8) used with a typical tunable lens material
(nb = 1.3 and nf = 1.0), a magnification of ±2.904 is required to produce tuning that does not
incur spherical aberration. This magnification also results in a relatively high numerical aperture
of 0.275 at the tunable lens surface, which may complicate the system design.

The challenges associated with the prescribed magnification may be relaxed by intentionally
introducing coma into the initial optical configuration. By rearranging Eq. (48), it is found that
any magnification may be used provided that the coma of the system prior to tunable lens surface
is made equal to

W131 =
no

2nf (4nb + nf ) − nbnf
3M2

8no2nbLf
3 . (50)

Critically, coma may be added to the lens elements prior to the tunable surface in order to
eliminate tuning-induced spherical aberration, and lens elements after the tunable surface may be
used to correct this coma without reintroducing tuning-induced spherical aberration. Using this
approach, it is possible to design a complete optical system that is fully corrected in the initial
configuration and is simultaneously free from tuning-induced spherical aberration.

In the final case to be examined, it is assumed that the initial imaging system is free of coma
and afocal at the tunable lens surface, and tuning-induced spherical aberration is corrected using
a tuning-dependent aspheric form. Furthermore, the dimensions of the tunable lens surface are
taken to have a paraxial semi-diameter of hmax

′ for an angle of umax in the object space. Given
these constraints, the position of the image plane is given by

Lf = ±
nf hmax

′ |M |

noumax
. (51)

Substitution of this relationship into Eq. (47) yields the following requirement for the tuning-
dependent aspheric parameter

γ = −
noumax

4

8(nb − nf )(hmax
′)4

. (52)

4. Conditions for elimination of tuning-induced axial color

Prior studies have examined the axial chromatic aberration of stacks of thin lenses that include
tunable surfaces. These studies suggest that multiple tunable surfaces can be used to correct for
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tuning-induced axial color [58], but a single tunable surface embedded in an achromatic assembly
cannot [35]. This study applies a similar approach but examines the axial color induced by a
single tunable surface inside a thick optical system that contains chromatic aberrations in the
initial configuration.

The axial chromatic aberration may be calculated by tracing a ray that emerges from an on-axis
object that is a distance Lo + ζ(Ct) from the first principal plane and intersects with a tunable
surface located at the exit pupil. The trajectory of this ray is analyzed starting with the ray
following refraction from the tunable surface and working backwards toward the object. The
relationship between the ray angle following refraction at the tunable surface (u†) and the ray
angle prior to the tunable surface (u′) may be calculated using the paraxial approximation [57,
Eqns. 3.66-67]

−nb(λ) u†(Ct, yp
′, λ) + nf (λ) u′(Ct, yp

′, λ) = −yp
′
[︁
nb(λ) − nf (λ)

]︁
Ct, (53)

where λ is the wavelength of the light ray, u†(Ct, yp
′, λ) is the angle of the ray following refraction,

and the other terms are as previously defined, except they are given here as explicit functions of
the curvature of the tunable surface and wavelength. The relationship between the ray angle prior
to tunable lens (u′) and the ray angle at the object (u) is found by observing that the ray emerges
from the first principal plane at the same height that it intercepts the second principal plane

u′(Ct, yp
′, λ)

[︁
Lp + α2(λ)

]︁
+ yp

′ = u(Ct, yp
′, λ) [Lo + ζ(Ct) + α1(λ)] , (54)

where Lp is the distance from the second principal plane to the exit pupil in the initial tuning
state for the central wavelength, and α1(λ) and α2(λ) represent wavelength-dependent shifts in
the position of the principal planes relative to the physical position of the lens. By continuing to
trace the ray backwards, the relationship between the ray angle at the object (u) and the position
on the entrance pupil (yp) is found to be equal to

−u(Ct, yp
′, λ) [Lt(λ) − ζ(Ct)] = yp(λ). (55)

Equations (53)–(55) collectively provide the value of u† in terms of yp. To produce a closed-
form solution, the position at the entrance pupil (yp) must be related to the position at the exit
pupil (yp

′), which is given by
yp

′ = Mp(λ) yp(λ), (56)
where Mp(λ) is the lateral magnification of the pupil image.

Although Eqs. (53)–(56) describe the desired relationship between u† and yp
′, these equations

rely on as yet unknown α1(λ) and α2(λ) functions. Formulae for these quantities may be obtained
by observing that for the entrance pupil to image onto the exit pupil [57, Eqn. 3.15], it is necessary
that

no(λ)

Lt(λ) + Lo + α1(λ)
+

nf (λ)

Lp + α2(λ)
=

1
f (λ)

, (57)

where f (λ) is the effective focal length of the optical system prior to the tunable surface.
Furthermore, the Lagrange invariant [57, Eqn. 3.18] provides that

no(λ)

Lt(λ) + Lo + α1(λ)
= −

nf (λ)Mp(λ)

Lp + α2(λ)
. (58)

Equations (57) and (58) may then be solved for α1(λ) and α2(λ). Rearrangement of
Eqs. (53)–(58) yields

u†(Ct, yp
′, λ) =

yp
′

nb(λ)f (λ)Mp(λ)
+
[nb(λ) − nf (λ)]Ctyp

′

nb(λ)

+
no(λ)yp

′

nb(λ)[Mp(λ)]2[Lt(λ) − ζ(Ct)]
.

(59)
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Further simplification of Eq. (59) may be achieved by eliminating ζ(Ct). If the system remains
in focus at the central wavelength with changes in tuning,

∂u†

∂Ct

|︁|︁|︁|︁
Cto,yp′,λo

= 0, (60)

where Cto is the curvature of the tunable surface in the initial configuration, and λo is the central
wavelength. Substitution of Eq. (59) into Eq. (60) and rearrangement yields the following
relationship

d ζ
dCt

|︁|︁|︁|︁
Cto

= −
[Lt(λo)Mp(λo)]

2[nb(λo) − nf (λo)]

no(λo)
. (61)

Finally, the tuning-induced axial chromatic aberration may then be taken as the partial derivative
of u† (Eq. (59)) with respect to both Ct and λ, followed by substitution with Eq. (61), yielding

∂2 u†

∂Ct ∂λ

|︁|︁|︁|︁
Cto,yp′,λo

=
yp

′
[︁
nb(λo) − nf (λo)

]︁
nb(λo)

[︄
2

Mp(λo)

d Mp

dλ

|︁|︁|︁|︁
λo

−
1

no(λo)

d no

dλ

|︁|︁|︁|︁
λo

+
2

Lt(λo)

d Lt

dλ

|︁|︁|︁|︁
λo

]︄
+

yp
′

nb(λo)

[︄
d nb

dλ

|︁|︁|︁|︁
λo

−
d nf

dλ

|︁|︁|︁|︁
λo

]︄
.

(62)

For certain analyses it may be useful to calculate the tuning-induced axial color in terms of
displacements of the focal position rather than changes of the ray angle. The relationship between
the two may be found by taking

zb(Ct, λ) =
yp

′

u†(Ct, yp ′, λ)
, (63)

where zb(Ct, λ) is the virtual focal position formed by rays refracted by the tunable surface.
Taking the second-order derivative of Eq. (63) and applying Eq. (60) yields

∂2zb

∂Ct∂λ

|︁|︁|︁|︁
Cto,λo

= −
[zb(Ct, λ)]2

yp ′
∂2u†

∂Ct∂λ

|︁|︁|︁|︁
Cto,yp′,λo

. (64)

Examination of Eq. (62) reveals that the tuning-induced axial chromatic aberration is zero if
the initial configuration meets the following condition

1
Mp(λo)

d Mp

d λ

|︁|︁|︁|︁
λo

= −

d nb
dλ

|︁|︁|︁
λo

−
d nf
dλ

|︁|︁|︁
λo

2
[︁
nb(λo) − nf (λo)

]︁ + 1
2no(λ)

d no

dλ

|︁|︁|︁|︁
λo

−
1

Lt(λ)

d Lt

dλ

|︁|︁|︁|︁
λo

. (65)

This wavelength dependence in the lateral magnification of the pupil represents lateral color of
the pupil image. Consequently, this result shows that first-order tuning-induced axial chromatic
aberration may be eliminated by introducing lateral color into the pupil image prior to the tunable
lens surface. In the general case, this lateral color would also be associated with undesirable
tuning-independent axial color in the image space. However, the same strategy used to correct
for spherical aberration may be applied here as well. If tuning-induced axial color is absent,
then the wavefront emerging from the tunable surface is independent of the tuning state of the
system to within the applied approximation level. As a result, after tuning-induced axial color
has been eliminated, additional lens elements after the tunable lens may be used to correct
for tuning-independent axial color. Using this approach, both the tuning-independent and
tuning-induced axial chromatic aberrations may be simultaneously corrected.
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5. Numerical verification of analytical predictions

5.1. Simulation of test cases with varying intermediate magnifications

The analytical model developed above indicates that tuning-induced spherical aberration can be
eliminated to first-order by designing the system with an intermediate focal plane adjacent to the
tunable lens surface with a prescribed magnification. This prediction was examined by evaluating
the performance of a series of test cases using exact numerical ray tracing (Zemax OpticStudio
15.5). These designs address a common use case in biological microscopy, axial scanning with a
long-working distance, high numerical aperture, water immersion objective. The test system
was comprised of a 40x/0.8 water immersion objective, two tube lenses, an air objective that
formed an intermediate image plane, a tunable lens surface, and a wavefront reference surface
(see Fig. 3(A)). The 40x/0.8 water immersion objective was designed using standard approaches
and has diffraction-limited performance over a typical operating range (450-700nm, 22mm field
number, 4.4mm working distance; see Fig. 3(B) and Table S1). The two tube lenses had an
effective focal length of 200mm and approximate standard Nikon tube lenses (based on published
patents [59]; see Table S2). Three air objectives were designed with magnifications of 20x,
13.77x, and 10x using standard approaches (see Fig. 3(D)-I and Tables S3-5). These air objectives
produce system magnifications of 4x, 2.904x, and 2x that bracket the value of 2.904x predicted
to eliminate first-order tuning-induced spherical aberration for the present conditions (no = 1.33,
nf = 1.0, nb = 1.3). They were each diffraction-limited in conjunction with the water-immersion
objective and tube lenses across the full field of view, although since they were designed for
test purposes little effort was expended in optimizing them for manufacture. Each of these air
objectives was also designed to form a 14mm diameter pupil behind the intermediate image
plane, and the tunable lens surface was positioned at this pupil position. The tunable lens surface
was taken to have a spherical form that was flat at the initial focal position. A wavefront reference
surface was positioned behind the tunable lens, the reference surface was taken as an aspheric
surface that zeros the wavefront error across the surface for the initial focal position, such that
subsequent measures of wavefront error at this surface reflect tuning-induced aberration. For
comparison, the performance was also examined for a system with a traditional design in which
the tunable lens surface is positioned at the infinity-focused pupil formed by the tube lenses
(Table S6). Tuning-induced wavefront error was assessed similarly, using a reference surface
located behind the tunable surface.

For each test case, the object position was varied from -150µm to +150µm along the optical
axis, the curvature of the tunable surface was optimized to zero the defocus term of the wavefront
function (for λ=497nm), and the spherical aberration term of the wavefront function was computed
(9th Zernicke fringe coefficient). As predicted by the analytical model (Eq. (49)), a magnification
of 2.904x greatly decreases the effect of focal shift on the spherical aberration term of the
wavefront error (Fig. 3(J)). Correspondingly, magnifications above this value (4x, infinite) or
below this value (2X) have opposing effects on the first-order tuning-induced spherical aberration.
Although tuning-induced spherical aberration is a major contributor to wavefront error, higher-
order aberrations are often important in high-NA systems. In order to understand these effects,
the Strehl ratio was calculated for each test case as a function of the focal shift (Fig. 3(K)). Since
the Strehl ratio includes both lower-order spherical aberration and high-order aberrations, it
reflects the overall system performance. The test case with a magnification of 2.904X was found
to substantially outperform the other systems examined, achieving a diffraction-limited focal
range of 245µm compared to the focal range of 34µm recorded for the traditional infinity-focused
configuration.

In order to ensure that the predictions of the analytical model hold under a wide range of
conditions, a second test case was also constructed in which no, nf , and nb were all modified.
The configuration of this test case parallels that used above, and consisted of a 40x oil immersion
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Fig. 3. Tuning-induced spherical aberration of on-axis points is reduced by control of
system magnification (A) Schematic diagram of test cases used to examine the effect of
system magnification on tuning-induced spherical aberration. (B) A 40x/0.8 water immersion
objective designed for the test case. (C) Tube lenses used for the test cases (F=200mm).
(D-F) Air objectives with magnifications of 10x, 13.77x, and 20x designed for the test
cases. (G-I) RMS wavefront error for objectives in (D-F), respectively, at the initial focus
position across the field of view at a range of wavelengths (450nm, 506nm, 597nm, 700nm,
polychromatic). The dashed grey line shows an RMS error of 0.075λ, or diffraction-limited
performance. (J) The effect of a shift in the focus position on the spherical aberration when a
tunable lens surface (n=1.3) is positioned at the pupil to the right of each of the air objectives
in (D-F). For each focal position, the curvature of the tunable lens surface was adjusted to
hold the system in focus and the spherical aberration was computed at a reference surface
positioned behind the tunable lens (λ=497nm). For comparison, the spherical aberration is
also shown for a system at infinite magnification (4f system), simulated by omitting the air
objective and positioning the tunable surface at the rear pupil. (K) The effect of a shift in the
focus position on the Strehl ratio for the test cases of (J) (dashed grey line shows Strehl ratio
= 0.8, or diffraction-limited performance).
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objective (no=1.52), two tube lenses (F=200mm), a water immersion objective that formed
an intermediate image (nf=1.33), a tunable air surface (nb=1.0), and a wavefront reference
surface (see Fig. S1A-C; Table S7-8). The focal length of the water immersion rear objective
was optimized to produce an intermediate image with magnifications of 4x, 2.64x, and 2x,
centered around the value of 2.64x predicted to eliminate tuning-induced aberration (Eq. (49)).
The effect of a focal shift on spherical aberration was examined as above. Consistent with the
predictions of the analytical model, the test case with an intermediate magnification of 2.64x
displayed little tuning-induced spherical aberration, and magnifications above and below this
value showed opposing effects of focal shifts on spherical aberration (Fig. S1D). Similarly, the
diffraction-limited focal range of the 2.64x test case was 6-fold greater than that of the 4x test
case (Fig. S1E). Residual tuning-induced spherical aberration has a number of potential sources,
including wavefront error in the initial configuration, assumptions in the analytical model (e.g.,
the tunable surface is a thin lens), and other high-order effects. After starting with an initial
design based on analytical approximations, it is likely that such residual aberrations may be
reduced through subsequent numerical optimization.

5.2. Simulation of test cases with added coma

The results of Section 3.7 suggest that tuning-induced spherical aberration may be reduced by the
deliberate introduction of coma into the initial configuration. This prediction was evaluated using
numerical ray tracing and the 2x, 2.904x, and 4x test cases described above. In order to ensure
that coma was the only property altered, ray tracing was performed from the wavefront described
by Eq. (32) through the tunable surface using a custom-written MATLAB script (Mathworks
R2020b). Rays were traced from multiple pupil and focal positions (yp

′ to 5mm, ζ to 300µm),
the curvature of the tunable surface was varied to maintain the system in paraxial focus, and the
tuning-induced spherical aberration was characterized by computing δS/(yp

′)3 (Eq. (46)). The
calculated spherical aberration was then evaluated as a function of the coma magnitude W131 for
each test case and these values were compared to the prediction of the analytical model (Eq. (48)).
The results of numerical ray tracing were found to be in very good agreement with the analytical
model (Fig. 4). In particular, it was found that when the intermediate image had a magnification
of 2.904x tuning-induced spherical aberration was eliminated without added coma (W131 = 0).
When the intermediate image magnification was increased to 4x, the introduction of coma in
the amount of W131 = 1.4 × 10−5mm−3 also successfully eliminated tuning-induced spherical
aberration. These results suggest that introducing coma into the initial configuration provides a
viable approach for correcting tuning-induced spherical aberration.

5.3. Simulation of test cases with an aspherical tunable surface

The analytical model also provides a prediction for the magnitude of the aspheric coefficient
necessary to correct for tuning-induced spherical aberrations. This prediction was examined
using numerical ray tracing and test cases mirroring those used above for examining the effects
of system magnification. The test system consisted of a 40x water immersion objective, two
F=200mm tube lenses, and a tunable aspherical lens surface (n=1.3, spherical + 4th-order
polynomial) positioned at the rear pupil. A flat wavefront reference surface was positioned behind
the tunable lens. The object position was then varied from -150µm to +150µm along the optical
axis, and the parameters for the tunable surface were optimized to zero the defocus and spherical
aberration terms of the wavefront function (for λ=497nm). This calculation was performed for
a lens system operating at reduced aperture (NA=0.2) and at full aperture (NA=0.8), and the
computed 4th-order aspheric coefficients were examined as a function of the focal shift. The
4th-order coefficients computed using this approach were found to vary in an approximately linear
manner with the focal shift (Fig. 5(A)). The reduced aperture (NA=0.2) test case and analytical
model produced nearly identical results over the examined focal shift, which strongly supports
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numerical ray tracing and analytical modeling (Eq. (48)). Simulations were performed for
the 2x, 2.904x, and 4x test cases described in Fig. 3 (λ=497nm).

the correctness of the analytical model. The full aperture (NA=0.8) test case yielded coefficients
that were 44% greater for this particular system, likely reflecting the influence of higher-order
aberrations that had less weight in the smaller aperture test case and were neglected in the
analytical model. In order to understand the practical effects of these reductions in aberration, the
Strehl ratio was also computed as a function of the focal shift, and the aspheric tunable surface
was found to allow for diffraction-limited performance over the entire 300µm that was examined
(Fig. 5(B)).

Given the favorable performance observed for on-axis points, the widefield performance of a
system incorporating an aspherical tunable surface was next examined. The test case described
above was modified, optimizing the RMS wavefront error across the design field of view (550µm)
by varying the curvature and 4th order aspheric coefficient for each focal position. The Strehl
ratio for points at the edge of the field of view was then calculated for each focal position. Despite
the promising performance of the on-axis system, the Strehl ratio for an off-axis point was
found to deteriorate quickly as the focal position was shifted (Fig. 5(C)). Next, this test case was
re-optimized for polychromatic light (450-650nm), and the Strehl ratio at an off-axis point was
computed for a central wavelength (497nm) as a function of the focal position. As might be
expected, the inclusion of chromatic aberrations resulted in further decreases of the Strehl ratio
and additional narrowing of the diffraction-limited focal shift range.

5.4. Simulation of test cases with reduced tuning-induced axial color

The analytical modeling of Section 4 predicts that first-order tuning-induced axial color can
be eliminated by introducing lateral color into the pupil image. That prediction was evaluated
with numerical ray tracing and a test system that parallels the one used above to examine the
effects of magnification on tuning-induced spherical aberration. This system included a 40x
water immersion objective, two F=200mm tube lenses, a 13.77x air objective, a spherical tunable
lens surface (n=1.3), and an aspherical wavefront reference surface positioned behind the tunable
lens. A larger than typical Abbe number was used for the tunable lens surface (vd=30) to increase
the axial chromatic aberration and provide a stricter test. The simulations were implemented
with a multi-configurational system that examined a central and offset wavelength (λ=497nm and
597nm) as well as image formation with the initial focus position, image formation at a displaced
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Fig. 5. Tuning-induced aberration is reduced with an aspherical tunable surface (A)
The effect of focal shift on the optimal 4th-order aspheric coefficient. An aspherical tunable
lens surface (n=1.3, spherical + 4th-order) was positioned at the rear pupil of the infinite
magnification system of Fig. 3, and the curvature and 4th-order aspheric coefficient were
optimized to minimize wavefront error for an on-axis ray pencil (λ=497nm) on a reference
surface behind the tunable lens. Three solutions are shown: optimization for a large-angle
0.8NA object pencil, optimization for an intermediate-angle 0.2NA ray pencil, and the
analytical solution provided in Eq. (52). (B) Strehl ratio for the aspherical system of (A)
(red), compared against a similar system with a spherical tunable surface (blue) (dashed grey
line shows Strehl ratio = 0.8, or diffraction-limited performance). (C) Strehl ratio at the edge
of the field of view for a system similar to that of (A) (λ=497nm). The system was optimized
to reduce the RMS wavefront error across the entire field of view for monochromatic light
(λ=497nm; red) and polychromatic light (497nm; green). The dashed grey line shows
Strehl ratio = 0.8, and the dashed parts of the data curves show regions where vignetting is
unavoidable with the stock tube lens design.
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focus position (ζ=300µm), and pupil image formation. The system was then modified to vary the
pupil lateral color (1/Mp dMp/dλ) by optimizing the radii and spacing of the tube lens and air
objective surfaces. Since there are a large number of free variables, a strict comparison requires
the system to be carefully constrained to match the assumptions of the analytical model. The
applied constraints included that the intermediate image in front of the tunable lens is free of
monochromatic aberrations at the central wavelength and has a fixed magnification (2.904x), the
curvature of the tunable surface eliminates the defocus term of the wavefront error, the exit pupil
is located at the tunable surface and has no axial color, and the reference surface is updated so
that the wavefront error remains zero at the initial focus position for the central wavelength.

Using the above test case, the tuning-induced axial color was calculated as the difference
in the chromatic focal shift between the displaced (ζ=300µm) and initial (ζ=0µm) states, and
this value was compared to that predicted by the analytical model (Eq. (63)). The results of
the numerical simulations and analytical model were found to be in excellent agreement, and
demonstrate that the deliberate introduction of lateral color into the pupil image can be used to
remove tuning-induced axial color (Fig. 6). Finally, although a rigorous numerical approach was
employed here, for typical design efforts it is likely that a simple constraint on the lateral pupil
color is sufficient to yield color-corrected systems.
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Fig. 6. Tuning-induced axial color is reduced by controlling lateral pupil color. The
effect of varying the lateral color of the pupil image on the tuning-induced axial color for a
test case based on the 2.904x system of Fig. 3. Results are shown for numerical ray tracing
(dashed red line) and the analytical solution (black line) provided in Eq. (63).

6. Design of a widefield axial-scanning optical system

In order to explore how these findings may be practically applied, the identified conditions were
used to guide the design of a 40x axial-scanning microscope system. This system was comprised
of a 40x water immersion objective, two tube lenses, an air objective, a commercially available
tunable lens element (Optotune EL-16-40-TC), and a relay lens. The first design iteration was
based upon the 2.904x test case described above, thereby eliminating tuning-induced spherical
aberration at a central wavelength. Multi-configurational optimization was then used to further
refine this design and improve the imaging quality for off-axis points. This optimization was
constrained such that the first tube lens formed a diffraction-limited intermediate image for the
initial configuration, as this is likely to ease the integration of such a system into a modular
microscope system. During axial scanning the intermediate image formed between the tube



Research Article Vol. 12, No. 6 / 1 June 2021 / Biomedical Optics Express 3549

lenses shifts forward and backward. The optimization was further constrained such that this
intermediate image does not pass into either tube lens, so that dust and surface imperfections on
these lens surfaces do not produce artifacts in the final image. In addition, the optimization was
constrained to produce a system pupil between tube lens 2 and the air objective. Although this
pupil remains empty in this design, a deformable mirror adaptive optics element could be easily
integrated at this position in order to compensate for small wavefront aberrations that may be
introduced by the sample object or from imperfections in the tunable lens. Lastly, the system was
constrained to avoid vignetting for any field or focal position, and to use only viable tunable lens
powers (lens is specified for -10 dpt to 10 dpt, optimized design uses 5.07 to 8.43 dpt range).

This process yielded a design with a wide field of view (550 µm), large focal shift range
(350 µm), large numerical aperture (NA=0.8), wide wavelength range (apochromatic correction,
450-625nm), constant magnification, and diffraction-limited performance across the operating

A

40x Obj TL1 TL2 Air Obj
Tunable

Lens
Relay
Lens

Image
sensor

B C

E FD
10mm

40x/0.8 Water Immersion Objective

Tube Lenses

Relay LensTunable LensAir objective

20mm

G Image sensor

* *

* *

PupilInter. Image

H Intermediate Image

0.1

RM
S 

(λ
)

0.0

625 Poly558493450

Field Position (µm)
0 275

I

0.1

RM
S 

(λ
)

0.0

625 Poly558493450

Field Position (µm)
0 275

J

0.1

RM
S 

(λ
)

0.0

625 Poly558493450

Field Position (µm)
0 275

K

0.1

RM
S 

(λ
)

0.0

625 Poly558493450

Field Position (µm)
0 275

Fig. 7. Design of diffraction-limited, wide-field, axial-scanning 40x microscope system
(A) Schematic diagram of the optical path, comprising a 40x water immersion objective,
two tube lenses (TL1 and TL2), an air objective, a tunable lens, a relay lens, and an image
sensor. The positions of the following are indicated: the intermediate image formed between
TL1 and TL2 for an object at the design focal position of the objective (“inter. image”),
the intermediate images formed for objects shifted by -250µm and +100µm (planes with
asterisks), and a pupil in front of the air objective. (B) A 40x/0.8 water immersion objective
(same as Fig. 3(B)). (C) Designed tube lenses. (D) Designed air objective. (E) Model
of commercially-available tunable lens (Optotune EL-16-40-TC). (F) Designed relay lens.
(G) Rays at the image sensor (C-G drawn at same scale). (H) RMS wavefront error at the
intermediate image for an object at the design focal position of the objective (dashed grey
line shows RMS error of 0.075λ or diffraction-limited performance). (I-K) RMS wavefront
error at the image sensor for objects shifted by -250µm, 0µm, and +100µm (dashed grey line
shows RMS error of 0.075λ).
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range (Fig. 7; Table S9). The achieved focal shift range (350 µm) is approximately an order
of magnitude greater than the diffraction-limited range of a traditional infinity-focused design
(34µm; Fig. 3(K)). The design produces an intermediate image before the tunable lens that has a
lower magnification (15.2x) than would be expected if this intermediate image was aberration-free
(Eq. (47)). However, this intermediate image contains a substantial amount of coma, which
has been shown to assist in eliminating tuning-induced spherical aberration (Eq. (50)). This
coma and other aberrations present in the initial configuration are corrected by the relay lens
behind the tunable surface, such that both the tuning-independent and tuning-induced aberrations
are simultaneously corrected. This system was designed to be very highly corrected across
the operating range (<0.06λ polychromatic RMS wavefront error) in order to demonstrate the
feasibility of such correction, but it may be reasonable for future designs to sacrifice some
performance to reduce costs.

7. Discussion

This study examines the spherical and chromatic aberrations of axial-scanning optical systems
containing a tunable lens element, with a particular emphasis on high numerical aperture
configurations that are common for biological microscopy. It is shown that tuning-induced
spherical aberration for on-axis points can be eliminated by controlling the lateral magnification
and coma of the optics prior to the tunable surface. Consistent with prior experimental studies
[50–52], it is also found that a tuning-dependent aspherical surface can be used to reduce
aberrations for on-axis points and, to a more limited extent, off-axis points. Furthermore, it is
shown that tuning-induced axial chromatic aberration may be eliminated by introducing lateral
color of the pupil image prior to the tunable surface. The conditions necessary to eliminate
tuning-induced lateral color, changes in magnification, spherical aberration, and axial color
are described with simple formulae appropriate for design purposes. These insights are then
used to design a high-NA axial-scanning microscopy system that provides diffraction limited
performance over a wide field of view (550µm) and deep axial range (350µm).

Tunable optical elements provide an effective means of performing rapid axial scanning, and
the results presented here demonstrate that tuning-induced aberrations may be eliminated through
system-level design. Although the analytical approximations developed in this manuscript focus
on lower-order aberrations, higher-order aberrations often play a significant role in the total
wavefront error for high-NA systems. The presented design of a high-NA axial-scanning system
(Fig. 7) demonstrates that if lower-order aberrations are eliminated with analytical constraints
that high-order aberrations may be corrected through numerical optimization. In addition, the
analytical approaches applied in this study could be extended to capture higher order terms if
additional insights into these terms were necessary. A potential caveat to these findings is that it
is unclear if current tunable lenses provide the high surface accuracy necessary for diffraction-
limited performance over wide focus ranges. However, rapid progress in lens manufacturing
techniques suggests that surface accuracy will continue to improve [43,45–52]. Furthermore, the
present analysis shows that unintentional deviations from a spherical form can be mitigated by
adjusting the design of other optical components (Eq. (47)), provided the deviations are consistent
and known [37]. Consequently, high-performance tunable lens systems appear poised to drive
major advances in volumetric imaging and biological microscopy.
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